User Tools

Site Tools


en:navody

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
en:navody [2019/01/29 16:20] – [Very high voltage power supply] fluktuaciaen:navody [2023/01/15 12:59] (current) – [General hints concerning modules] 94.112.192.193
Line 1: Line 1:
-====== General hints concerning modules ======+====== General hints for use of MLAB modules ======
  
 This page sums up the possibilities and means of MLAB modules' use. The individual paragraphs contain various different applications and special cases. This page sums up the possibilities and means of MLAB modules' use. The individual paragraphs contain various different applications and special cases.
  
-Beginners can make us of [[en:guide|a guide for beginners]].   +Beginners can make use of [[en:guide|a guide for beginners]].   
  
 ===== Obtaining a module ===== ===== Obtaining a module =====
  
-In order to begin construction, first you have to obtain all the necessary modules - either by [[en:how_to_make_pcb|building your own prototypes]] or by [[http://www.ust.cz/shop/|buying a ready-made modules]]. In case you do not find the necessary module, you can build it according to [[en:rules|rules guaranteeing the compatibility]].+In order to begin construction, first you have to obtain all the necessary modules - either by [[en:how_to_make_pcb|building your own prototypes]] or by [[http://www.ust.cz/shop/|buying a ready-made module]]. In case you do not find the necessary module, you can build it according to [[en:rules|rules guaranteeing compatibility]].
  
 ===== Tools ===== ===== Tools =====
Line 13: Line 13:
 ==== Mechanical tools ==== ==== Mechanical tools ====
  
-Work with MLAB modules requires only basic mechanical tools: a hexagonal socket wrench 5.5 mm with knurled edge for tightening using a hand, a hex key (in case of older models a cross screwdriver) and a lot of M3 nuts. +Work with MLAB modules requires only basic mechanical tools: a hexagonal socket wrench 5.5 mm with knurled edge for tightening using a hand, a hex key (in the case of older models a cross screwdriver)and a lot of M3 nuts. 
  
 {{:cs:mechanical_tools.jpg?direct&200|}} {{:cs:mechanical_tools.jpg?direct&200|}}
Line 22: Line 22:
 === Multimeter === === Multimeter ===
  
-Multimeter of almost any type is sufficient, however we recommend a digital one.+A multimeter of almost any type is sufficient, howeverwe recommend a digital one.
  
 {{:multimetr.jpg?direct&200|An example of an adequate multimeter}} {{:multimetr.jpg?direct&200|An example of an adequate multimeter}}
Line 30: Line 30:
 === Oscilloscope === === Oscilloscope ===
  
-An oscilloscope is a very useful tool when tuning any signal system. We use following Rigol DS1052E, which, in its basic version, is 50MHz, but a firmware change can update it to 100MHz.  +An oscilloscope is a very useful tool when tuning any signal system. We use the following Rigol DS1052E, which, in its basic version, is 50MHz, but a firmware change can update it to 100MHz.  
    
 {{:rigol_ds1052e.jpg?direct&200|An example of an oscilloscope}} {{:rigol_ds1052e.jpg?direct&200|An example of an oscilloscope}}
Line 37: Line 37:
 === Soldering iron === === Soldering iron ===
  
-A soldering iron is not necessary for most of the MLAB constructions, it is, however, a good investment for any laboratory. We can recommend Czech [[http://sagat.vyrobce.cz/doku.php?id=mikropajky|micro soldering irons from Sagat company]]. They have an excellent heat power and tips of high quality. +A soldering iron is not necessary for most of the MLAB constructions, it is, however, a good investment for any laboratory. We can recommend Czech [[http://sagat.vyrobce.cz/doku.php?id=mikropajky|micro soldering irons from Sagat company]]. They have excellent heat power and tips of high quality. 
  
 {{:ersp50.jpg?direct&200|An example of micro soldering iron - ERSP50}} {{:ersp50.jpg?direct&200|An example of micro soldering iron - ERSP50}}
  
-It is even possible to agree on purchasing a 100W version with parameters exceeding even high class micro soldering irons from Weller.+It is even possible to agree on purchasing a 100W version with parameters exceeding even high-class micro soldering irons from Weller.
    
-When soldering peaces like connectors or thick wires and tinned sheet metal boxes, it is more practical to use a transformer soldering iron because of its higher heat power (150W).+When soldering pieces like connectors or thick wires and tinned sheet metal boxes, it is more practical to use a transformer soldering iron because of its higher heat power (150W).
  
 {{:trafopajka-elektricka-125w.jpg?direct&200|An example of transformer soldering iron}} {{:trafopajka-elektricka-125w.jpg?direct&200|An example of transformer soldering iron}}
  
-When buying a transformer soldering iron, make sure you are buying the one with a horizontal soldering tip, as shown on the picture. Transformer soldering irons with vertical tips are more suitable for sheet soldering or welding / cutting of plastics. +When buying a transformer soldering iron, make sure you are buying one with a horizontal soldering tip, as shown in the picture. Transformer soldering irons with vertical tips are more suitable for sheet soldering or welding/cutting plastics. 
  
-**All types of soldering irons require a tube tin and a flux, otherwise they will not work properly.** For more information see chapter about flux -[[http://www.mlab.cz/Articles/HowTo/How_to_make_PCB/DOC/HTML/How_to_make_PCB.cs.html]]+**All types of soldering irons require a tube tin and a flux, otherwisethey will not work properly.** For more information see the -[[http://www.mlab.cz/Articles/HowTo/How_to_make_PCB/DOC/HTML/How_to_make_PCB.cs.html|blog article chapter about flux ]]
  
 === An aid for smoke extraction === === An aid for smoke extraction ===
  
-During any soldering, the evaporated flux creates a very unpleasant smoke that irritates the respiratory tract. One of the solutions is to build a simple aid from an older PC ventilator. Connect it to an adjustable power supply and set it on a table in a way that it would blow the smoke away from the soldering workplace. In order to reduce noise, the ventilator can be put onto a piece of rubber, for example from an old inner tube of a bike.+During any soldering, the evaporated flux creates a very unpleasant smoke that irritates the respiratory tract. One of the solutions is to build a simple aid from an older PC ventilator. Connect it to an adjustable power supply and set it on a table in a way that it would blow the smoke away from the soldering workplace. In order to reduce noise, the ventilator can be put onto a piece of rubber, for example from an old inner tube of a bike.
  
 ==== Using the tools ==== ==== Using the tools ====
Line 60: Line 60:
 === Connecting the oscilloscope probe === === Connecting the oscilloscope probe ===
  
-An oscilloscope’s probe ground can be easily connected to an MLAB kit thanks to the base [[en:base1621|ALBASE]]. Most of the modules (with an exception of power supply ones) have the corner screws connected to GND. That is why it is sufficient to put a screw from below to the base and screw it with a nut from above. You can use the protruding screw as a ground clamp for the oscilloscope’s probe.+An oscilloscope’s probe ground can be easily connected to an MLAB kit thanks to the base [[en:base1621|ALBASE]]. Most of the modules (with an exception of power supply ones) have corner screws connected to GND. That is why it is sufficient to put a screw from below to the base and screw it with a nut from above. You can use the protruding screw as a ground clamp for the oscilloscope’s probe.
  
-The signal probe input can be connected to MLAB in following way: the connecting cable is cut to half, part of the cable is stripped of an insulation and a crimp pin connector is crimped onto the cable. Now the cable, via the crimp pin connector, can be easily attached to the probe’s hook and its second end with the original PC terminalcan be connected to the pinch outlets of all modules.+The signal probe input can be connected to MLAB in the following way: the connecting cable is cut in half, part of the cable is stripped of insulation and a crimp pin connector is crimped onto the cable. Now the cable, via the crimp pin connector, can be easily attached to the probe’s hook and its second end with the original PC terminal can be connected to the pinch outlets of all modules.
  
 ===== Connecting of modules ===== ===== Connecting of modules =====
Line 70: Line 70:
 ==== Power supply ==== ==== Power supply ====
  
-Power provided by [[en:napajeci_zdroje|power supplies]] is distributed, among the modules, via cables different from the usual interconnecting ones. Furthermore, they are coloured according to the different power voltages, thus reducing the possibility of a fatal mistake during their connecting. +Power provided by [[en:napajeci_zdroje|power supplies]] is distributed, among the modules, via cables different from the usual interconnecting ones. Furthermore, they are colored according to the different power voltages, thus reducing the possibility of a fatal mistake during their connecting. 
  
 === Power supply up to +5V === === Power supply up to +5V ===
Line 80: Line 80:
 == 3.3V == == 3.3V ==
  
-Power voltage of 3.3 V is lead by the same cable as the +5V power supply, only the red wire is replaced by an orange one.+The power voltage of 3.3 V is led by the same cable as the +5V power supply, only the red wire is replaced by an orange one.
  
 === Voltage higher than +5V === === Voltage higher than +5V ===
  
-This category usually involves 7.2 (2x Li-ion cell) or +12V (lead-acid battery or other power supplies). For safety reasons it is therefore led via a yellow (+) and black (-) cable, following an example of ATX power supplies. Connectors are four-pin, the middle two pins being + and the outer two -/GND. The connector is symmetrical, so the polarity cannot be easily mixed up.+This category usually involves 7.2 (2x Li-ion cell) or +12V (lead-acid battery or other power supplies). For safety reasonsit is therefore led via a yellow (+) and black (-) cable, following an example of ATX power supplies. Connectors are four-pin, the middle two pins being + and the outer two -/GND. The connector is symmetrical, so the polarity cannot be easily mixed up.
  
 {{:cs:powering_cable_yellow-black.jpg?350|Power cable for higher voltages}} {{:cs:powering_cable_yellow-black.jpg?350|Power cable for higher voltages}}
Line 90: Line 90:
 === Symmetrical power supply === === Symmetrical power supply ===
  
-This kind of power supply, conventionally +12V and -12V, is used in analogue constructions, which are using operational amplifiers. It is distributed by power cables with 5 pins - the middle + two pins are positioned symmetrically around the central - pin and the two extreme pins on both sides are GND or framing(kostra ??) +This kind of power supply, conventionally +12V and -12V, is used in analog constructions, which are using operational amplifiers. It is distributed by power cables with 5 pins - the middle + two pins are positioned symmetrically around the central - pin and the two extreme pins on both sides are GND or chassis.
  
 {{:cs:powering_cable_symmetric.jpg?350|A cable for symmetrical power supply}} {{:cs:powering_cable_symmetric.jpg?350|A cable for symmetrical power supply}}
Line 96: Line 96:
 === High voltage power supply === === High voltage power supply ===
  
-In cases where we work with high currents (up to tens of Amperes) and, at the same time, high voltages (tens of Volts) (a typical example is a robot’s drive powered from an accumulator), the power is distributed via an individual cables with FASTON connectors. Because the protection against polarity reversal is quite problematic in case of high currents, there is a need for increased caution when connecting such constructions. +In cases where we work with high currents (up to tens of Amperes) and, at the same time, high voltages (tens of Volts) (a typical example is a robot’s drive powered from an accumulator), the power is distributed via an individual cable with FASTON connectors. Because the protection against polarity reversal is quite problematic in case of high currents, there is a need for increased caution when connecting such constructions. 
  
 === Very high voltage power supply === === Very high voltage power supply ===
  
-It includes power voltage in range of hundreds of volts to ones of kV. Such powering is used for certain special detectors or gas discharge lamps, LASERs, etc. It is distributed via a coaxial cable with SHV or MHV connectors.+It includes power voltage in the range of hundreds of volts to ones of kV. Such power is used for certain special detectors or gas discharge lamps, LASERs, etc. It is distributed via a coaxial cable with SHV or MHV connectors.
  
 ==== High-frequency signals ==== ==== High-frequency signals ====
 === Asymmetrical signals === === Asymmetrical signals ===
  
-Analogue VF signals are distributed in MLAB via a classic VF Pigtail usually made form coax RG-174 with both ends having a screw-type SMA (Male) connector.+Analogue VF signals are distributed in MLAB via a classic VF Pigtail usually made from coax RG-174 with both ends having a screw-type SMA (Male) connector.
  
 {{:cs:sma_cable.jpg?320|SMA cable}} {{:cs:sma_cable.jpg?320|SMA cable}}
  
  
-**Caution** the connector in the picture contains a sample error - a missing shrinking tube over a crimped connector ferrule. Without it, there is gradual breaking of the cable sheet from the connector.+**Caution** the connector in the picture contains a sample error - a missing shrinking tube over a crimped connector ferrule. Without it, there is the gradual breaking of the cable sheet from the connector.
  
-**Crimped connectors’ ferrules have to be proteced by a shirnking tube! ** [[http://www.youtube.com/watch?v=SuoQfriRhSE|A guide for crimping SMA connectors]] - in the video guide, the connector is covered by a special sleeve instead of a shrinking tube +**Crimped connectors’ ferrules have to be protected by a shrinking tube! ** [[http://www.youtube.com/watch?v=SuoQfriRhSE|A guide for crimping SMA connectors]] - in the video guide, the connector is covered by a special sleeve instead of a shrinking tube 
  
  
 === Differential symmetrical signals  === === Differential symmetrical signals  ===
  
-Fast digital signals, such as those of AD converters’ clocks or sequence circuits, are in MLAB usually distributed differentially in order to limit interference. We usually use PECL or LVDS logic. Signals are lead via a standard direct (??) SATA cable - chosen for its defined impedance and good availability. +Fast digital signals, such as those of AD converters’ clocks or sequence circuits, are in MLAB usually distributed differentially in order to limit interference. We usually use PECL or LVDS logic. Signals are led via a standard direct SATA cable - chosen for its defined impedance and good availability. 
  
 {{:cs:sata_cable.jpg?350|SATA cable}} {{:cs:sata_cable.jpg?350|SATA cable}}
Line 123: Line 123:
 ==== Digital buses ==== ==== Digital buses ====
  
-Digital buses, such as I2C, TWI or 1-wire are distributed between the modules via standard cables, usually only adjusted so that one plastic ending contains all the bus’s wires, eventually together with a power supply.+Digital buses, such as I2C, TWIor 1-wire are distributed between the modules via standard cables, usually only adjusted so that one plastic end contains all the bus’s wires, possibly together with a power supply.
  
 ===== Maintenance and cleaning ===== ===== Maintenance and cleaning =====
Line 129: Line 129:
 ==== Interconnecting cables ==== ==== Interconnecting cables ====
  
-Due to gradual wear by mechanical switching, the interconnecting cables’ connectors loose their conductivity. It last several hundreds of connections and re-connections until the phenomenon occurs, but it might be speeded up by careless transport of already connected constructions, during which the connectors undergo a side strain. (For example when carrying more connected boards thrown one other another in a box). You can revel this states simply by checking, that the cable sleeve (?? Dutinka kablíku) does not hold onto the pin (?? Hřebínek)+Due to gradual wear by mechanical switching, the interconnecting cables’ connectors lose their conductivity. It lasts several hundreds of connections and re-connections until the phenomenon occurs, but it might be speeded up by careless transport of already connected constructions, during which the connectors undergo a side strain. (For example when carrying more connected boards thrown one other another in a box). You can reveal this state simply by checking, that the cable pin does not hold onto the pin header with perceptible friction
-The above-mentioned state can be repaired by  +The above-mentioned state can be repaired by slight deforming of the connector spring by using a screwdriver or other similar toolThe procedure is done from outside at the connector's lockapplying pressure on the spring against a table.
- +
-U propojovacích kablíků se v důsledku jejich postupného opotřebení mechanickým přepojováním snižuje vodivost jejich konektorůTrvá řádově několik stovek zapojenínež se tento jev projeví, ale může být urychlen například neopatrnou přepravou zapojených konstrukcí, kdy jsou konektory v desce stranově namáháhy. (například hozených více zapojených desek na sebe v krabici) Tento stav se pozná jednoduše i mechanicky tak, že dutinka kablíku téměř nedrží nasunutá na hřebínku. +
- +
-Tento stav lze napravit opětovným napružením kontaktu konektoru šroubovákem, nebo jiným podobným nástrojem. To se provádí zvenku u zámku konektoru. tlakem na pružinku proti stolu.+
  
 ==== Modules ==== ==== Modules ====
  
-Most of the modules does not require any additional maintenance. Sometimes it happens, that dust piles up intensively onto modules. It might be solved either by blowing it away with an air blower ball (compressed air) or by brushing it off with an anti-static brush.  +Most of the modules do not require any additional maintenance. Sometimes it happens, that dust piles up intensively onto modules. It might be solved either by blowing it away with an air blower ball (compressed air) or by brushing it off with an anti-static brush.  
  
-<WRAP info> It is not possible to use electrostatic duster for dust removal as it might cause destruction of certain electronic circuits in modules </WRAP>+<WRAP info> It is not possible to use an electrostatic duster for dust removal as it might cause the destruction of certain electronic circuits in modules </WRAP>
  
-When a module is extremely dirty, it can be cleaned in an ultrasonic cleaner. However, there are some modules (sensors, GPS) that might be damaged by this process, that is why it cannot be universally recommended.+When a module is extremely dirty, it can be cleaned with an ultrasonic cleaner. However, there are some modules (sensors, GPS) that might be damaged by this process, which is why it cannot be universally recommended.
  
 ===== External connectors ===== ===== External connectors =====
Line 158: Line 154:
 Power supplies may also use a PC standard [[http://en.wikipedia.org/wiki/ATX|ATX]] and [[http://en.wikipedia.org/wiki/Molex_connector|MOLEX connector]]. Power supplies may also use a PC standard [[http://en.wikipedia.org/wiki/ATX|ATX]] and [[http://en.wikipedia.org/wiki/Molex_connector|MOLEX connector]].
  
-In case of having a power supply supplied only from batteries, it is better to use e.g. BATPOWER02A module. When connecting accumulators, where we expect higher current load, T-connectors are used (the standard cylindrical model-building ones did not work out very well)   +In the case of having a power supply supplied only from batteries, it is better to use e.g. BATPOWER02A module. When connecting accumulators, where we expect higher current load, T-connectors are used (the standard cylindrical model-building ones did not work out very well)   
  
 {{:cs:deans-plug-tplug-t-plug-rc-lipo-battery-plug-connectors-rc-t-plug-ts3u.jpg?200|T connectors}}   {{:cs:deans-plug-tplug-t-plug-rc-lipo-battery-plug-connectors-rc-t-plug-ts3u.jpg?200|T connectors}}  
Line 167: Line 163:
 === Screw terminal === === Screw terminal ===
  
-There are two widespread type of commonly used screw terminal on the market. Apart from a considerable difference in their costs, they also differ greatly in quality and convenience of their use. +There are two widespread types of commonly used screw terminals on the market. Apart from a considerable difference in their costs, they also differ greatly in the quality and convenience of their use. 
  
-The first type is more common mostly due to its low price. However, thanks to using a sheet metal washer under screws, it is not possible to fasten a naked wire of small diameter well into this type of screw terminal. Furthermore, the sheet metal washers often fall out or block the pulling out of the wire.  +The first type is more common mostly due to its low price. However, thanks to using a sheet metal washer under screws, it is not possible to fasten a naked wire of small diameter well into this type of screw terminal. Furthermore, the sheet metal washers often fall out or block the pulling out of the wire.  
  
 {{:cs:bad-screw-terminal-block.jpg?200|}} {{:cs:bad-screw-terminal-block.jpg?200|}}
  
-The second type is more expensivebut does not experience the above mentioned problems. Furthermore, it is possible to fasten even a naked wire. This terminal block guarantees a good quality of conductive connection. +The second type is more expensive but does not experience the above-mentioned problems. Furthermore, it is possible to fasten even a naked wire. This terminal block guarantees a good quality conductive connection. 
    
 {{:cs:ok-screw-terminal-block.jpg?200|}}   {{:cs:ok-screw-terminal-block.jpg?200|}}  
Line 179: Line 175:
 === Spring terminal block === === Spring terminal block ===
  
-Spring terminal block are an excellent modern substitute for screw terminals, which are slowly becoming technically obsolete. Their disadvantage, in comparison to screw terminals, is a slightly large size and an impossibility of connection compression regulation.+Spring terminal blocks are an excellent modern substitute for screw terminals, which are slowly becoming technically obsolete. Their disadvantage, in comparison to screw terminals, is a slightly larger size and an impossibility of regulating the compressing of connection.
  
-One of the commonly used spring terminal block is WAGO256.+One of the commonly used spring terminal blocks is WAGO256.
  
 {{:cs:wago256.jpg?100|MLAB WAGO256}}  {{:cs:wago256.jpg?100|MLAB WAGO256}} 
Line 189: Line 185:
 ==== High-frequency signals ==== ==== High-frequency signals ====
  
-High-frequency signals are led to external devices in the same way as they are between modules - via coaxial cable with SMA connectors or they are connected via a short pigtail to some other panel [[http://en.wikipedia.org/wiki/RF_connector|RF connector]]. Preferred are following connectors’ types (in a given order): F, BNC, N and PL. +High-frequency signals are led to external devices in the same way as they are between modules - via coaxial cables with SMA connectors or they are connected via a short pigtail to some other panel [[http://en.wikipedia.org/wiki/RF_connector|RF connector]]. Preferred are the following connectors’ types (in a given order): F, BNC, Nand PL. 
-In order to connect distant devices, such as receiving antenna, F-connector is a good choice, mainly thanks to its easy assembly and disassembly, allowing for an easy placement of coaxial cabels+ 
 +In order to connect distant devices, such as receiving antennae, F-connector is a good choice, main thanks to its easy assembly and disassembly, allowing for easy placement of coaxial cables
  
 ==== Data connectors ==== ==== Data connectors ====
Line 196: Line 193:
 === USB === === USB ===
  
-The most widely used external bus used with modules is a [[http://en.wikipedia.org/wiki/Universal_Serial_Bus|USB]] with USB-B connector. A reason for using USB B is that it is the most robust USB connector, it has outlets through the board and thus it does not brake away from PCB (like other variants of USBmicro connectors). +The most widely found external bus used with modules is a [[http://en.wikipedia.org/wiki/Universal_Serial_Bus|USB]] with USB-B connector. A reason for using USB B is that it is the most robust USB connector, it has outlets through the board and thus it does not brake away from PCB (like other variants of USB micro connectors). 
  
 {{:cs:usb-b.jpg?200|USB connector on MLAB modules}}  {{:cs:usb-b.jpg?200|USB connector on MLAB modules}} 
  
-Using an USB connector on a module requires placing a current fuse into the charing from USB (usually 750mA PTC). Otherwise a short circuit can cause a fall of HOST system and thus a data loss (of a tuned program).  +Using USB connector on a module requires placing a current fuse into the charging from USB (usually 750mA PTC). Otherwisea short circuit can cause a fall of the HOST system and thus a data loss (of a tuned program).  
  
 === RS-232 === === RS-232 ===
Line 208: Line 205:
 === RS-485 === === RS-485 ===
  
-In industry, this bus is used with terminal blocks. Therefore it is suitable to use e.g. [[en:inputuni|INPUTUNI01A]] module. +In industry, this bus is used with terminal blocks. Therefore it is practical to use e.g. [[en:inputuni|INPUTUNI01A]] module. 
  
 === CAN === === CAN ===
  
-To distribute CAN bus over longer distance, for example in house, we recommend using UTP cable and RJ-45 connectors.+To distribute CAN buses over longer distances, for example in buildings, we recommend using UTP cable and RJ-45 connectors.
  
 ===== Test constructions ===== ===== Test constructions =====
Line 225: Line 222:
 ==== Measuring arrangement ==== ==== Measuring arrangement ====
  
-The following way of assembly, when we use úhelníky (??), for example form Merkur building kit, in order to attach the corner screws, has an advantage in that you can access both sides of the board without any problems and carry out measurements also on a PCB. It is thus suitable for revive new modules.+The following way of assembly, when we use structural shapes, for example, from the [[https://merkurtoys.cz/Merkur building kit]], in order to attach the corner screws, has an advantage in that you can access both sides of the board without any problems and carry out measurements also on a PCB. It is thus suitable for reviving new modules.
  
 {{:mlab_testing_mount1.jpg?direct&200|}} {{:mlab_testing_mount2.jpg?direct&200 |}} {{:mlab_testing_mount1.jpg?direct&200|}} {{:mlab_testing_mount2.jpg?direct&200 |}}
Line 231: Line 228:
 ==== Direct mounting ==== ==== Direct mounting ====
  
-Modules can also be screw directly to each other, a feature advantageous mainly for undemanding constructions made of several modules of similar size.+Modules can also be screwed directly into each other, a feature advantageous mainly for undemanding constructions made of several modules of similar size.
  
 {{:direct_mounting.jpg?direct&200|}} {{:direct_mounting.jpg?direct&200|}}
Line 237: Line 234:
 ==== Tower arrangement ==== ==== Tower arrangement ====
  
-Metal MLAB mounts can be stack on onto another using threaded rods. Such arrangement saves space and enables construction of more complicated and extensive systems.+Metal MLAB mounts can be stacked with one another using threaded rods. Such an arrangement saves space and enables the construction of more complicated and large-scale systems.
  
 {{:mlab_tower.jpg?direct&200|Tower arrangement of MLAB boards}} {{:mlab_tower.jpg?direct&200|Tower arrangement of MLAB boards}}
  
-The threaded rods used in the example are of M5 type and each board is fastened by a nut from above and below. There are washer between the board and the nuts. There is a spring washer used with one of the nuts. Cutting length (?? Řezná délka) in case of two boards above each other is 12 cm. This length was chosen because 1m threaded rod can be divided into 8 columns and there are 4cm left for cutout  (?? Prořez) and tolerance. +The threaded rods used in the example are of M5 type and each board is fastened by a nut from above and below. There are washers between the board and the nuts. There is a spring washer used with one of the nuts. The cutting length in the case of two boards above each other is 12 cm. This length was chosen because 1m threaded rod can be divided into 8 columns and there is 4cm left for cutout and tolerance. 
  
 ===== Permanent installations ===== ===== Permanent installations =====
  
-We can easily construct permanent or semi-permanent installations from the kit by screwing the tuned constructions with the base board to the bottom of the junction box. In order to increase the resistance against vibrations we can glue the přívody k hřebíkům (??) with a hot-melt adhesive and tie the cables to the base with a cable tie. Such construction is relatively cheap and, at the same time, robust and adjustable if necessary.   +We can easily construct permanent or semi-permanent installations from the kit by screwing the tuned constructions with the baseboard to the bottom of the junction box. In order to increase the resistance against vibrations we can glue the přívody k hřebíkům (??) with a hot-melt adhesive and tie the cables to the base with a cable tie. Such construction is relatively cheap and, at the same time, robust and adjustable if necessary.   
  
 ==== Stand-alone construction ==== ==== Stand-alone construction ====
Line 255: Line 252:
 ==== Installation into the distribution board  ==== ==== Installation into the distribution board  ====
  
-In a similar manner, modules can be installed in the low-voltage parts of distribution boards. You can use plastic clips (??) (available at good electro shops) to attach them onto a DIN panel.+In a similar manner, modules can be installed in the low-voltage parts of distribution boards. You can use plastic clips (??) (available at good electro shops) to attach them to a DIN panel.
  
 {{:wall_box_din_mount.jpg?200|MLAB in home distribution board}} {{:wall_box_din_mount.jpg?200|MLAB in home distribution board}}
Line 261: Line 258:
 ==== Installation into the electrical box ==== ==== Installation into the electrical box ====
  
-Electrical box can be used in a similar way as a distribution board with one exception - there is usually not any problem with attaching the [[en:base1621|base board]].+An electrical box can be used in a similar way as a distribution board with one exception - there is usually not any problem with attaching the [[en:base1621|base board]].
  
 {{:mlab_electrical_box.jpg?direct&200|LABduino in a box}} {{:mlab_electrical_box.jpg?direct&200|LABduino in a box}}
en/navody.1548778811.txt.gz · Last modified: 2019/01/29 16:20 by fluktuacia